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1. Introduction 

With the increasing ubiquity of deep learning mod-

els in many areas, the field of interpretability has 

emerged to understand what exactly a model is doing 

and how it is learning, given its complexity and 

opaqueness. The demand for tools to help interpret 

and gain confidence in these models’ performance 

has thus grown. A common task of deep learning 

models is classification, which has been used for two 

and three dimensions of images, videos, and objects, 

and adopted by various applications such as computer 

vision in autonomous vehicles, robotics, and mixed 

reality. Convolutional neural networks, in particular, 

are often used for such classification tasks. This pro-

posal aims to address the following questions: What 

is the shape and structure of an activation space for 

three-dimensional objects? How are activations orga-

nized within and across layers of a three-dimensional 

convolutional neural network (3D-CNN)? And how 

can these patterns be visualized to explore a 3D-CNN 

and its training process? I propose to apply tools from 

topological data analysis, specifically the Mapper al-

gorithm, to capture the overall shape and pattern of 

activation vectors within a 3D-CNN, and provide an 

interface for visualization. 

2. Related Work 

Topology in Neural Networks. Laying the 

groundwork for the use of topology to better interpret 

neural networks, it has been found that neural net-

works preserve topological features of the data when 

it is projected into space with low dimensionality (Po-

lianskii 2018). Furthermore, the process of training 

has been associated with simplifying topological de-

scriptors of the data manifolds in the internal repre-

sentation of a CNN (Magai & Ayzenberg 2022)—in 

the first few epochs, topology changes insignificantly 

whereas in later epochs in which the network is more 

well-trained, the topology of data is quickly changed 

throughout the layer hierarchy. 

This proposal is largely based on the work of 

TopoAct (Rathore et al. 2021), a visual exploration 

system on topological summaries of activation vec-

tors using the Mapper graph, so that insights into 

learned representations by a neural network can be 

gained. However, TopoAct focuses primarily on two-

dimensional images and objects, whereas this pro-

posal focuses on three-dimensions of images and ob-

jects, specifically in three-dimensional convolutional 

neural networks. 

 

Prior Work by the Applicant. This proposal is 

derived from my curiosity of neural network pro-

cesses during my work using convolutional neural 

networks to classify brain tumors from MRI data with 

UBC Multifaceted Innovations in Neurotechnology 

(MINT), as well as during my studies in Cognitive 

Systems that further propelled my interest in both the 

mathematics and implications of neural networks. My 

prior work is therefore adjacent to this proposal, and 

contributes to my understanding of deep learning. 

3. Theoretical background 

Mapper Algorithm. The Mapper algorithm defined 
by Singh et al. (2007), is a method in topological data 
analysis based on the notion of partial clustering in the 
data and can be used to reduce high-dimensional da-
tasets into simplicial complexes that capture topologic 
and geometric information of interest at a specific res-
olution. A simplicial complex is a combinatorial object 
in which its evolution is observed as the resolution 
scale varies: Let P be a discrete set. Then, an abstract 
simplicial complex is a finite collection K of finite, 
nonempty sets of P (simplices). A k-simplex is defined 
where σ is the convex hull of k+1 affinely independent 
points. For example, a 0-simplex is a point, 1-simplex 
an edge, 2-simplex a triangle, 3-simplex a tetrahedron, 
and so on. The Mapper algorithm and its graph is aptly 
suited for visualizing functional structure, such as that 



of neural networks, because it can capture an under-
standing of structure by characterizing the relationship 
between a feature space and prediction space, even 
with a highly sparse representation of the dataset. 

4. Approach 

First, activation vectors as high-dimensional point 

clouds are collected from a chosen layer of a 3D-

CNN by feeding binary 3D tensors (representing a 

shape) into the network. The dimension of each acti-

vation vector depends on the neuron count within a 

layer, and a collection of activations from overlap-

ping spatial patches in the tensor. These activation 

vectors are used to compute Mapper graphs, which 

summarize the topological information of the dataset. 

Each node in the graph represents a cluster of activa-

tion vectors, and an edge connects two nodes if their 

corresponding clusters have a non-empty intersection. 

A k-nearest neighbors (K-NN) graph is used to select 

a more adaptive ε value for the activation space of a 

layer. Feature visualization is then applied to each 

node in the Mapper graph, transforming high-dimen-

sional vectors into more semantically meaningful rep-

resentations by synthesizing an idealized object that 

would have produced vector hx,y through an iterative 

optimization process. This process is similar to back-

propagation and applies gradient descent in a Fourier 

basis, resulting in corresponding objects that are 

likely to have produced such an activation. 

With this topological information, we can then create 

a user interface that visualizes topological patterns 

such as branches and loops, as well as a global view. 

Branches are seen when bifurcations occur among 

object classes. Loops are seen as clusters, when dif-

ferent features of objects are captured. A global view 

allows us to observe the overall distribution of topo-

logical structures. 

5. Evaluation and Discussion 

To evaluate this framework, I propose using datasets 
such as the Princeton Shape Benchmark (Shilane et al. 
2004) and ShapeNet which consists of 3D CAD mod-
els (Chang et al. 2014) to observe the shape of learning 
representations within 3D-CNNs. Moreover, we may 
be able to evaluate the generalizability of the frame-
work to other types of data and network architectures 
such as two-dimensional or three-dimensional image 
data on the MNIST or CIFAR datasets in standard 
CNN (not 3D-CNN) architectures. 

The most prominent implication of this framework 

is anticipated to be improvement in the interpretabil-

ity of 3D-CNN models, and dependent upon results, 

other neural network architectures. A user interface 

allows people coming from various backgrounds to 

visualize the structure of a 3D-CNN and its learning 

process.  

Furthermore, this framework may provide for correc-

tive actions during training, including humans in the 

loop to improve accuracy of the network. If, for ex-

ample, we observe that two classes bifurcate at a cer-

tain layer and continue to be misclassified, the net-

work width can be increased or training data can be 

selectively augmented. Additionally, this framework 

may be useful in analyzing the effect of adversarial 

attacks at different layers of the network by visualiz-
ing how an attack alters the activations. This frame-

work proposes understanding topological structure of 

activation spaces within a 3D-CNN to explore the in-

terpretability of deep learning models through visuali-

zation. 
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