
Human Computer Interaction for Brain Computer Interfaces

1. Introduction
A brain-computer interface (BCI) is a hardware-software complex that functionally

establishes a direct connection between a computational or digital control system and the brain
[1]. In tandem with robotics, BCI holds potential for future development in various fields
including rehabilitation, prosthetics, entertainment, and augmentation [2-4]. The central premise
of BCI-robotic systems is that the user is given a specific task designed to elicit a task-specific
brain activation pattern, which is then identified by the data acquisition system. BCIs can use a
variety of neuroimaging techniques including functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG) and functional near-infrared spectroscopy (fNIRS) [5-7]. The
primary technique used by BCI systems, however, is electroencephalography (EEG), given its
benefits of being non-invasive and portable, and having sufficient spatial and temporal
resolution for BCI systems depending on quality and number of electrodes. EEG-BCI systems
are typically configured to detect specific neurophysiological input which non-exhaustively
includes slow cortical potential, sensorimotor rhythms, and evoked potentials [8].

Most current EEG-BCI systems include measures of mental (cognitive) workload, the
amount of mental resources engaged in a task, and/or mental fatigue, reduced alertness from
growing time-on-task (TOT) [9]. Moreover, measures of usability which typically encompass
effectiveness, efficiency, satisfaction, and/or learnability are utilized to evaluate the system
[10-11]. This literature review focuses primarily on exploring human-computer interaction within
EEG-BCI systems from training to use, with the central purpose of understanding interaction for
a navigation task.

2. BCI Training Sequence
Applying EEG-BCI systems as proposed poses several challenges, especially regarding

acceptance by users. Zander et al. (2010) presents the following five stages for structuring a
BCI session [12]:

1. User Training: User gets familiarized with the task of the next stage (Machine Training).
2. Machine Training: User is guided to generate prototypes of brain activity which can be

used as input for the EEG-BCI system. All artifacts should be controlled, and the
outcome should be a detector system that is able to distinguish the intended navigation
commands (front, back, left, right).

3. Confluence: EEG-BCI system should have the ability to be controlled by the previously
defined detector. Parameters may be adjusted and the user can learn how to interact
with the system.

4. Validation: The first test of the EEG-BCI system, with an outcome of a performance
estimate of the defined detector.

5. Application: The defined and validated detector is applied for generating input to the
EEG-BCI system resulting from brain activity of the user.

Furthermore, Mladenović et al. (2018) in [13] emphasize that to assist users in producing
clear EEG patterns is to assist their learning, given that one’s capacity to create distinct EEG
patterns is dependent on psychological components. These psychological components include



motivation, mood, skills, and personality traits [13-15]. BCI output is thus adapted by
considering a spectrum of users’ psychological components to maintain motivation and
performance, and to be efficient and effective–assisting in better EEG-BCI feedback design and
task adaptation. In this way, EEG patterns are regulated, suggesting that there is a direct
relationship from user learning to machine learning.

3. Cognitive Load and User Demands
Cognitive Load Theory (CLT) suggests that performance degrades at excessively low

and excessively high cognitive loads; under these conditions, learners may cease to effectively
learn [16-17]. Given the previously established relationship between user learning and machine
learning in an EEG-BCI system, it is thus prudent to measure cognitive load to ensure the
effectiveness of the system. One such method is to estimate cognitive load using EEG signals
which are then classified using deep learning architectures, which has been observed to
out-perform traditional machine learning (ML) classifiers such as support vector machine (SVM),
k-nearest neighbors (KNN), and linear discriminant analysis (LDA) [18-19]. Authors in [18]
propose two models, 1) stacked denoising autoencoder (SDAE) followed by a multilayer
perceptron (MLP) and 2) long term short memory (LSTM) followed by an MLP, in which SDAE
and LSTM are used for feature extraction and MLP is used for classification of cognitive load
data. It was observed that SDAE followed by MLP out-performed LSTM followed by MLP,
although both out-performed traditional ML techniques.

In regards to how EEG signals are collected in measuring cognitive load, medical grade
EEG devices have often been used [20-21] yet are expensive and not user-friendly for regular
use. However, the recent launch of low-cost wireless EEG headsets, namely Emotiv and
Neurosky, have opened up the possibility for the commercialization of EEG-BCI [22]. Authors in
[22] implemented cognitive load detection with criterion that differentiates a low cognitive task
from a high-cognitive task; each of the trial epochs and the baseline epochs are S-transformed
to decompose the non-stationary EEG signal in time-frequency domain for better precision and
then the alpha band (7.5 to 12.5 Hz) and theta band (4 to 7.5 Hz) mean frequency and power
for all trials and baselines are calculated separately for all EEG leads from N channels. Based
on a performance index and a quality index, it was observed that Emotiv can provide superior
results than Neurosky when measuring cognitive load as it can probe a larger part of the brain,
hence carrying more information. Nevertheless, tradeoffs exist in that Neurosky is more
user-friendly, and easier to set up and maintain, although its capacity for cognitive load detection
is limited. For the navigation task presented previously, Emotiv is used to capture EEG signals.

Furthermore, Steady State Visually Evoked Potentials (SSVEP) is a cerebral pattern
commonly used for EEG-BCIs. It is robust to external noise, requires limited training, and has
relatively stable performance across users [23-24]. Authors in [24] assess the cognitive demand
of the SSVEP paradigm and observe that little attention is needed from users to reach optimal
accuracy whether visual or auditory attention is solicited. Given its low cognitive demands of,
the SSVEP paradigm is thus encouraging for its use in complex interaction settings such as
navigation tasks.

4. User Experience and Usability



To holistically evaluate BCI-controlled applications, the usability of the system with
regard to its effectiveness, efficiency, and satisfaction can be measured. Effectiveness is defined
as how accurately and frequently the intended output is achieved, and is measured in [25] by
the relationship between successful selections and total number of attempted selections.
Efficiency relates the costs invested by the user to effectiveness; it can be objectively measured
by the information transferred per time unit (Information Transfer Rate) and subjectively
measured by workload with the NASA Task Load Index (TLX) [25]. Satisfaction refers to
perceptions of comfort and acceptance and is measured by authors in [25] with the Quebec
User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) and additional
BCI-specific items of reliability, speed, learnability, and aesthetic design.

While BCI systems are often designed for users with physical or mental impairments, its
capabilities can be extended to users with other purposes such as entertainment. Using the ISO
9241-11 usability model, authors in [26] measured effectiveness, efficiency, and satisfaction for
a gaming user population. Satisfaction was measured with the USE questionnaire [27],
effectiveness was measured with the percentage of tasks completed successfully divided by the
total number of tasks attempted, and overall relative efficiency [28] was calculated with the ratio
of the time taken by users who have successfully completed the task in relation to the total time
taken by all users. In [29], which similarly focuses on a gaming user population, usability is
divided into learnability, memorability, efficiency, effectiveness, safety, and satisfaction. Authors
in [29] found that training with neurofeedback can improve learnability, and that incorporating
training in the game to increase motivation can improve memorability. [29] also introduces the
possibility of error correction in BCI systems for safety, in which an error-related negativity
potential is visible in brain activity and can be used to automatically undo actions. For
satisfaction specific to gaming, it is presented that measures of user satisfaction can be
customized and personalized by storyline, presentation or difficulty level according to the user’s
mental state.

Although satisfaction as part of usability is often measured through self-report
questionnaires, such as in [28-30], authors in [31] detect user satisfaction level through brain
activity, given that emotional states activate certain parts of the brain, particularly in the frontal
lobe [32]. The feature vector is formed by taking the power spectral density of each EEG
frequency band and the four largest Lyapunov exponents of each EEG signal. The
Mann-Whitney-Wilcoxon test is then used to rank all the features, in which the highest ranked
features are then selected to train a linear discriminant classifier (LDC) in order to determine the
satisfaction level. There are thus various methods to obtain certain measures, depending on the
central goal as well as availability of resources.
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