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1. Introduction
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Motivation

SCENARIO

With access to model parameters alone for
a neural network trained on medical images,
e.g. an exported checkpoint, is there a risk
that patients can be re-identified?
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RESEARCH QUESTION 1

What patient re-identification risks are
present in training Al models on
radiology image data?

RESEARCH QUESTION 2

What is the magnitude of these risks?

RESEARCH QUESTION 3

What mitigations can be taken to reduce
these risks?

Research
questions
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Re-identification

The extent to which an image or its
features can be traced back to a real
patient, following de-identification [1-3].

Terminology
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Assumptions

01

We know the imaging modality and the
anatomical region of the target model’s
training data.

03

We can infer the target model’'s
architecture from the checkpoint by
inspecting its layers.

02

We only have access to the target
model’s parameters through a frozen
state_ dict checkpoint.

04

We do not have any of the target
model’s training images in practice.
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2. Theory and
related work
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Memory and memorization

Image models

Memorizing specific features from the training data - similarity
between original and reconstruction [4].

Memorization & privacy

Co-occurence with inadvertent privacy leakage and training data
reconstruction [5]. Overfitting is one marker of memorization [6].

Architectural differences

ViTs have been shown to memorize more and be more vulnerable to
reconstruction and privacy leakage [5].
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Image reconstruction (inversion) attacks

Gradient-based inversion [7] Pixel-based inversion [8]

Initialization Optimized Initialization Optimized

Latent-based inversion

Initialization Optimized
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3. Methods
overview
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Data: CheXpert sample

CNN loss

BatchNorm statistics
Feature activations

Logit confidence

Total variation regularizer

1. Internal activations &
statistics

2. Mahalanobis distance

Data: NIH ChestX-ray14

4 classifier models

Fine-tune PGGAN

Generate samples

Maximize sample likelihood

Predict demographics

no finding

ViT loss

LayerNorm statistics
CLS token activations
Attention entropy

Logit confidence

Total variation regularizer

biological sex (binary)

>

Patient information

Predict cardiomegaly vs.

Predict age (continuous) &
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4. Two-stage reconstruction
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Stage 1: Approximate target
data manifold

Assume a target model’s parameters, e.g. BatchNorm
statistics, are compressed representations of the
training data [8].

Fine-tune a pre-trained PGGAN’s generator to
approximate the training data manifold by matching the
target model’s parameters.

Instead of optimizing on the images directly, we
optimize the generator itself.

)
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Stage 2: Maximize sample likelihood

---------------------------------------------------------------------------------

' Find individual samples that produce ,
—i internal statistics and activations similar to |
. the target model's.

---------------------------------------------------------------------------------

Maximize the likelihood that a given sample is

plausible under the distribution implied by the
target model in its parameters.

---------------------------------------------------------------------------------

' Find individual samples that are close in
—! embedding-space distance to the target
. model’s feature layers.

---------------------------------------------------------------------------------
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5. Metrics
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Distribution shifts - CNN models

CNN Overfit CNN ViT Overfit ViT
Original » Fine-tuned Target CNN Original = Fine-tuned Target Overfit CNN Original - Fine-tuned Target ViT Original - Fine-tuned Target Overfit ViT
Pixel entropy 7.402 > 6.486 7.963 7.402 = 6.176 7.965 7.402 = 6.176 7.963 7.402 > 6.125 7.962
PCA kurtosis 1.065 = 0.436 4.306 1.065 > 0.566 0.532 1.065 = 1.001 4.299 1.065 > 0.58 0.396
FID score 159.9088 178.9562 95.5836 198.1082 74.7530 104.9406 90.0923 171.7221
CNN - Smoothed Kurtosis Curves Across Principal Components Overfit CNN - Smoothed Kurtosis Curves Across Principal Components
60 4 —— Fine-Tuned PGGAN —— Fine-Tuned PGGAN
—— Original PGGAN —— Original PGGAN
—— Target Model >0l ™ Target Model
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Distribution shifts - ViT models

CNN Overfit CNN ViT Overfit ViT
Original » Fine-tuned Target CNN Original = Fine-tuned Target Overfit CNN Original - Fine-tuned Target ViT Original - Fine-tuned Target Overfit ViT
Pixel entropy 7.402 > 6.486 7.963 7.402 = 6.176 7.965 7.402 = 6.176 7.963 7.402 = 6.125 7.962
PCA kurtosis 1.065 = 0.436 4.306 1.065 > 0.566 0.532 1.065 = 1.001 4.299 1.065 = 0.58 0.396
FID score 159.9088 178.9562 95.5836 198.1082 74.7530 104.9406 90.0923 171.7221
VIiT - Smoothed Kurtosis Curves Across Principal Components Overfit ViT - Smoothed Kurtosis Curves Across Principal Components
60 -+ —— Fine-Tuned PGGAN —— Fine-Tuned PGGAN
—— Original PGGAN o™ Original PGGAN
—— Target Model ' —— Target Model
50 -
1.5
40 -
1.0 A
2 2 0.5
20 -
0.0 -
10 -
—0.5 A
0 -

10 20

30 40 50

Principal Component Index

2.5 5.0 7.5 10.0 12.5 15.0 17.5

Principal Component Index

20.0

18



Overfit CNN Likely Samples (n=23)

Reconstruction Reconstruction Reconstruction Reconstruction Reconstruction

:

Mearest Match Mearest Match
SSIM: 0.475 SSIM: 0.484
NN: 0.765 NN: 0.826

- 3
-

Nearest Match
SSIM: 0.443
NN: 0.795

Nearest Match
SSIM: 0.379
NN: 0.799

MNearest Match
SSIM: 0.415
NN: 0.826

2

Reconstruction

Reconstruction Reconstruction Reconstruction Reconstruction

Nearest Match
SSIM: 0.405
NN: 0.806

'§

Nearest Match
SSIM: 0.464
NN: 0.817

Nearest Match
SS5IM: 0.463
NN: 0.783

Nearest Match
SSIM: 0.353
NN: 0.811

1}

)

Nearest Match
SSIM: 0.416
NN: 0.819

-

Reconstruction

Reconstruction Reconstruction

,

Mearest Match
SSIM: 0.531
NN: 0.769

Nearest Match
SSIM: 0.480
NN: 0.810

Nearest Match
SSIM: 0.363
NN: 0.824

Lh

Reconstruction Reconstruction

Reconstruction

1
lr '

Reconstruction Reconstruction

MNearest Match
SSIM: 0.379
NN: 0.818

Is

i

MNearest Match
SSIM: 0.433
NN: 0.813

Nearest Match
SSIM: 0.490
NN: 0.788

Nearest Match
SSIM: 0.438
NN: 0.779

Reconstruction

Nearest Match
SSIM: 0.390 SSIM: 0.459 SSIM: 0.399
NN: 0.804 NN: 0.789 NN: 0.809

0 N

MNearest Match
SSIM: 0.421
NN: 0.760

Reconstruction Reconstruction

Reconstruction Reconstruction

Nearest Match
SSIM: 0.430
NN: 0.801

Nearest Match Nearest Match Nearest Match
SSIM: 0.469

NN: 0.783




Overfit CNN Likely Samples (n=23)
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Nearest Match
SSIM: 0.469
NN: 0.783

Nearest Match
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CNN Likely Samples (n=2)

Reconstruction Reconstruction

Nearest Match Nearest Match
S5IM: 0.125 S5IM: 0.093
NN: 0.964 NN: 0.914

ViT Likely Samples (n=1)

Reconstruction

MNearest Match
SSIM: 0.501

NN: 0.978

Overfit ViT Likely Samples (n=2)

Reconstruction Reconstruction

Nearest Match Nearest Match
SSIM: 0.532 SSIM: 0.473
NN: 0.860 NN: 0.903
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6. Demographic
prediction
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Model

Regression task Classification task

Age Distribution: Ground Truth vs Predicted

25 1 24.1%4.2% Ground Truth Sex Classification Confusion Matrix
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Demographic predictions

Overfit CNN

0 51.083 36.347 38.0 13.083 1.653 Male Male Male True True

2 57.408 36.347 38.0 19.408 1.653 Male Male Male True True

4 66.833 38.156 36.0 30.833 2.156 Female Female Female True True

6 42.078 54 .446 60.0 17.922 5.554 Male Male Male True True

8 61.132 43.36 31.0 30.132 12.36 Male Female Female False True

10 56.758 38.156 36.0 20.758 2.156 Male Female Female False True

12 47.131 37.415 48.0 0.869 10.585 Female Male Male False True

14 54.889 36.348 38.0 16.889 1.653 Female Male Male False True

16 49.670 22.176 28.0 21.670 5.824 Male Female Female False True

18 38.040 38.156 36.0 2.040 2.156 Female Female Female True True

20 65.286 55.218 44.0 21.286 11.218 Male Male Male True True

22 67.026 36.347 38.0 29.026 1.653 Male Male Male True True
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Demographic predictions

CNN

0 53.775 27.856 21.0 32.775 6.856 Female Male Male False True

ViT

0 45,282 73.385 69.0 23.718 4.385 Male Male Male True True

Overfit ViT

0 43.817 30.173 33.0 10.817 2.827 Female Female Female True True
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/. Discussion
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Architectural and training differences

CNN & Overfit CNN

Farther distribution distance from
PGGAN.

More overlap between similarly
activated images and images close in
distance to the target model.

Leaves the original manifold more
aggressively but sacrifices realism.

VIiT & Overfit ViT

Closer distribution distance to both
PGGAN and target model.

Does not leave the original manifold
as much but still produces
semantically plausible images.

Less amount of likely samples but
more accurate demographic
predictions.
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Privacy
Implications

With a model’s parameters from a frozen checkpoint,
the VIiT may still pose a greater risk to patient re-
identification.

Yet, the CNN leads to reconstructions that are more
closely aligned with the target distribution.

This may be, in part, due to how memory is encoded in
each architecture’s parameters.
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Considerations & limitations

01

Only uses 2D images

02

Focus is on chest x-rays,
and does not account for
other modalities or
regions

03

Classification models only,
no segmentation,
regression, etc.

04

Study does not attempt to
link reconstructions and
demographics to real
patient identities
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Conclusion

Images and their predicted demographics have the
potential to re-identify a patient, depending on the
circumstances.

However, ensuring patient privacy involves a tradeoff
with enabling innovation and technical advancement.
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