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1. Introduction
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Motivation

With access to model parameters alone for 
a neural network trained on medical images, 
e.g. an exported checkpoint, is there a risk 
that patients can be re-identified?

SCENARIO



What is the magnitude of these risks?

RESEARCH QUESTION 2

What patient re-identification risks are 
present in training AI models on 
radiology image data?

RESEARCH QUESTION 1

What mitigations can be taken to reduce 
these risks?

RESEARCH QUESTION 3

Research 
questions

03



Re-identification
The extent to which an image or its 
features can be traced back to a real 
patient, following de-identification [1-3].

Terminology
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Assumptions
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We know the imaging modality and the 
anatomical region of the target model’s 
training data.

01

We can infer the target model’s 
architecture from the checkpoint by 
inspecting its layers.

03

We only have access to the target 
model’s parameters through a frozen 
state_dict checkpoint.

02

We do not have any of the target 
model’s training images in practice.

04
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2. Theory and
related work



Memory and memorization
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Image models

Memorization & privacy

Architectural differences

Memorizing specific features from the training data → similarity 
between original and reconstruction [4].

Co-occurence with inadvertent privacy leakage and training data 
reconstruction [5]. Overfitting is one marker of memorization [6].

ViTs have been shown to memorize more and be more vulnerable to 
reconstruction and privacy leakage [5].



Image reconstruction (inversion) attacks
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Gradient-based inversion [7]

Initialization Optimized Initialization Optimized Initialization Optimized

Pixel-based inversion [8] Latent-based inversion
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3. Methods
overview
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Fine-tune PGGAN

Generate samples

Maximize sample likelihood

Predict demographics

Patient information

4 classifier models
Data: CheXpert sample

CNN loss

1. Internal activations & 

statistics

Data: NIH ChestX-ray14

Predict age (continuous) & 

biological sex (binary)

2. Mahalanobis distance

BatchNorm statistics

Feature activations

Logit confidence

Total variation regularizer

LayerNorm statistics

CLS token activations

Attention entropy

Logit confidence

Total variation regularizer

ViT loss

Predict cardiomegaly vs. 
no finding
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4. Two-stage reconstruction



Stage 1: Approximate target 
data manifold

12

Assume a target model’s parameters, e.g. BatchNorm 
statistics, are compressed representations of the 
training data [8].

Fine-tune a pre-trained PGGAN’s generator to 
approximate the training data manifold by matching the 
target model’s parameters.

Instead of optimizing on the images directly, we 
optimize the generator itself.
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Stage 2: Maximize sample likelihood

15

Maximize the likelihood that a given sample is 
plausible under the distribution implied by the 
target model in its parameters.

Find individual samples that are close in 
embedding-space distance to the target 
model’s feature layers.

Find individual samples that produce 
internal statistics and activations similar to 
the target model’s.
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5. Metrics
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Distribution shifts - CNN models

Original  Fine-tuned→

Pixel entropy 7.402

159.9088 178.9562 95.5836 74.7530

7.963

4.299

104.9406 90.0923

7.963

4.306

6.486

1.065 →PCA kurtosis

FID score

Target CNN Original  Fine-tuned→ Target Overfit CNN Original  Fine-tuned→ Original  Fine-tuned→ Target Overfit ViTTarget ViT

1.065 0.566 1.065 1.001 1.065 0.58

7.402 7.965

0.532

198.1082

6.176 7.402 6.176 7.402 6.125 7.962

0.396

171.7221

0.436

CNN Overfit CNN ViT Overfit ViT
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Distribution shifts - ViT models

Original  Fine-tuned→

Pixel entropy 7.402

159.9088 178.9562 95.5836 74.7530

7.963

4.299

104.9406 90.0923

7.963

4.306

6.486

1.065 →PCA kurtosis

FID score

Target CNN Original  Fine-tuned→ Target Overfit CNN Original  Fine-tuned→ Original  Fine-tuned→ Target Overfit ViTTarget ViT

1.065 0.566 1.065 1.001 1.065 0.58

7.402 7.965

0.532

198.1082

6.176 7.402 6.176 7.402 6.125 7.962

0.396

171.7221

0.436

CNN Overfit CNN ViT Overfit ViT
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Overfit CNN Likely Samples (n=23)
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Overfit CNN Likely Samples (n=23)
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CNN Likely Samples (n=2) ViT Likely Samples (n=1) Overfit ViT Likely Samples (n=2)
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6. Demographic
prediction



Model

23

Best val AUC: 0.991

Best val MAE: 5.12 Best val RMSE: 6.63 Best val R2: 0.845 Best val accuracy: 0.950

Regression task Classification task



Demographic predictions
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Overfit CNN
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Demographic predictions
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CNN

PredAge_Recon

0 53.775
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6.856 Female Male
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False True

TrueFalseFemale25.735
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ViT

PredAge_Recon

0 45.282 73.385 23.718 4.385 Male Male Male True True69.0

PredAge_NN Age_GT AbsoluteError_Recon AbsoluteError_NN PredSex_Recon PredSex_NN Sex_GT Correct_Recon Correct_NN

Overfit ViT
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7. Discussion



Architectural and training differences
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CNN & Overfit CNN ViT & Overfit ViT

Farther distribution distance from 
PGGAN.

More overlap between similarly 
activated images and images close in 
distance to the target model.

Does not leave the original manifold 
as much but still produces 
semantically plausible images.

Less amount of likely samples but 
more accurate demographic 
predictions.

Leaves the original manifold more 
aggressively but sacrifices realism.

Closer distribution distance to both 
PGGAN and target model.
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Privacy

implications

With a model’s parameters from a frozen checkpoint, 
the ViT may still pose a greater risk to patient re-
identification.

Yet, the CNN leads to reconstructions that are more 
closely aligned with the target distribution.

This may be, in part, due to how memory is encoded in 
each architecture’s parameters.



Considerations & limitations
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Only uses 2D images

01

Focus is on chest x-rays, 
and does not account for 
other modalities or 
regions

02

Classification models only, 
no segmentation, 
regression, etc.

03

Study does not attempt to 
link reconstructions and 
demographics to real 
patient identities

04



Conclusion

30

Images and their predicted demographics have the 
potential to re-identify a patient, depending on the 
circumstances.

However, ensuring patient privacy involves a tradeoff 
with enabling innovation and technical advancement.
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