
Re-identification Risk of Medical
Imaging-Based Deep Learning
Models
Sadie Lee
Undergraduate Research Capstone

August 2025



Abstract

This report studies the risk of patient re-identification from a trained model’s parameters alone, for
models trained on de-identified radiology images. Re-identification is examined through the lens of
image reconstruction, from which identifiable information is extracted from reconstructed images.
Previous reconstruction attacks have assumed access to additional information such as gradients or
held-out training data, and generally do not consider re-identification. We present a two-stage
reconstruction approach that requires only a trained model and its parameters, and additionally predict
demographics from reconstructed images. Rather than reconstructing private training data by
optimizing the images themselves, as prior methods do, we optimize a generator to produce images
that lie along the target model’s training data manifold, in which internal statistics and parameters from
a frozen checkpoint are used as proxies for its true structure. Moreover, we demonstrate that model
architecture and presence of memorization significantly contribute to re-identification, where an overfit
vision transformer (ViT) outperforms overfit and non-overfit convolutional neural networks (CNNs) and
a non-overfit ViT. Cases in which patient re-identification would be possible from reconstructed images
and their predicted demographics, as well as potential mitigation strategies, are also discussed.
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Terminology

De-identification The removal of individually identifiable information that may allow for re-
identification, as defined by standards such as NIST [1] and DICOM PS3.15
[2], and the HIPAA Privacy Rule [3].

The terms ‘de-identification’, ‘anonymization’, and ‘pseudonymization’ are of-
ten used synonymously. ‘Anonymization’, specifically, is sometimes used to
indicate complete de-identification with zero residual risk of re-identification,
and is often considered separable from ‘de-identification’. However, complete
de-identification is not always possible [4]. This report will use the term ‘de-
identification’ exclusively for clarity.

Re-identification The extent to which an image or its features can be traced back to a real
patient following de-identification, which is consistent with definitions used in
the literature [5–8], regulation [9], and industry [10].

Direct identifier Information that can uniquely identify an individual on its own, e.g. patient
names [11], and is sometimes referred to as an explicit identifier in the litera-
ture [12].

Indirect identifier Information that can be used in combination with auxiliary information to re-
identify an individual, and is sometimes referred to as a quasi-identifier in the
literature [12, 13].
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Acronyms and Abbreviations

AUC Area Under the Curve.

BatchNorm Batch Normalization layers of a convolutional neural network.

CNN Convolutional Neural Network.

CT Computed Tomography.

DICOM Digital Imaging and Communications in Medicine.

DP Differential Privacy.

FID Fréchet Inception Distance.

GAN Generative Adversarial Network.

HIPAA Health Insurance Portability and Accountability Act.

LayerNorm Layer Normalization layers of a vision transformer.

MAE Mean Absolute Error.

MRI Magnetic Resonance Imaging.

NIST National Institute of Standards and Technology.

NM Nuclear Medicine.

PET Positron Emission Tomography.

PGGAN Progressive Growing Generative Adversarial Network.

PHI Protected Health Information.

PII Personally Identifiable Information.

RMSE Root Mean Squared Error.

SSIM Structural Similarity Index Measure.

US Ultrasound.

ViT Vision Transformer.

XR X-ray.
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1. Introduction

Medical imaging is a domain in which deep learning models have the potential to be clinically
meaningful, with significant effect on patient outcomes [14–16]. Training deep learning models using
medical images necessarily requires the acquisition and processing of patient data, which has raised
privacy concerns. Particularly, the current state of the art has shown that images from a model’s
training set can be reconstructed [17–20], which, in a medical context, could pose viable harm to
patient privacy if identifiable information can be gleaned from reconstructed images.

De-identification is thus the standard when using medical images to train deep learning models, i.e.
removing information perceived as useful to patient identification [5, 21]. However, de-identification
techniques may not definitively remove every pixel or voxel of information that has the potential to
identify a patient, which could be a vast amount of the image, and images must retain utility to train a
model [22]. There may consequently be some level of risk, such that a patient could be re-identified
from an image that has been de-identified.

This report reviews the risk of patient re-identification from de-identified medical images and primarily
addresses the following questions:

Q1: What patient re-identification risks to a de-identified dataset are present
in training deep learning models on radiology image data?
Q2: What is the magnitude of these risks according to model architectures,
imaging modalities, and anatomical regions?
Q3: What mitigations can be taken to reduce the risk of re-identification?

These questions are constrained under the assumptions that 1) we have access to a model’s
parameters alone, e.g. an exported checkpoint, and 2) we know the imaging modality and anatomical
region of the model’s training images.

The scope of this report is narrowed to radiology-specific modalities. Other modalities and their
specifications are not directly considered, including but not limited to, histopathology images,
biospecimens, physiological time-based waveforms, and image-related but non-image objects such as
DICOM structured reports.

Further, this report focuses on the training and development of radiology-based deep learning models
and does not discuss multimodal models, e.g. vision-language models, matters of ownership, or policy
recommendations.

Thus far, no comprehensive understanding of the risks to patient re-identification from model
parameters alone exists. We aim to address this by proposing a two-stage reconstruction approach,
predicting patient demographics from reconstructions, determining cases in which reconstructions and
their demographics could aid in patient re-identification, and presenting potential mitigation strategies.
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2. Imaging and Patient Privacy

2.1. DICOM file format

A DICOM image contains a header with metadata, one component holding PII or PHI which could be
used to identify a patient, such as patient demographics and institution site [23–25]. Information of
potential privacy concern within a DICOM image was outlined in a taxonomy by [5] and is visualized in
Figure 1 below. Robust de-identification typically accounts for items at both the metadata and
pixel/voxel level, although not all of these items may always be of significant concern in practice,
depending on the modality and image.

Metadata

Structured Numeric

Binary

Text

Binary

Text

Unstructured

Pixel data

Content

Features

Cursive (e.g. handwritten)

Logos (e.g. institutional)

Regular font

Direct (e.g. fingerprint)

Indirect (e.g. skull shape)

Faces

Internal and external genitalia

Distinct or unusual structural 

characteristics

Modifications (e.g. tattoos)

Physical objects (e.g. implants)

Burned-in/photographed 

unstructured text

Hidden (e.g. watermark)

Embedded metadata

Figure 1: Taxonomy of information for potential privacy concern, as outlined by [5].

2.2. Modality-specific considerations

The characteristics of an imaging modality may contribute to the risk of re-identification. US images
[26–28] and NM images [5], for example, frequently contain embedded metadata via burned-in text
that often occurs at distinct locations in the image. Volumetric images, such as CT and MR, may
contain identifiable information through visible necklaces and wristbands [29] or implants [30].
Structural images, such as x-rays, may allow for sufficiently clear per-patient textural differences or
shape differences [5, 31].

Tattoos are considered a ‘soft’ biometric identifier [32]; since the visual appearance of a tattoo and its
location may significantly vary, it is considered relevant to the identifiability of a patient and is typically
de-identified [5, 33]. A tattoo may be visible in mammograms and as an artifact in an MRI [34, 35].
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2.3. Region-specific considerations

As expected, cranial and whole body images that include the face have significant potential to
re-identify a patient, given widely available facial reconstruction and recognition technology. Faces
have been reconstructed from thin-section CT images [36] and hybrid PET/CT whole body images
[37], and recognized from cranial MR images [38] and cranial PET images [39].

Patient identity has also been recovered from de-identified chest XR images [31, 40] and from XR
images for mammography [41], primarily based on relationships between the visual appearance of the
image and its metadata fields.

2.4. HIPAA Safe Harbor

The Safe Harbor provision as outlined by HIPAA lists a set of eighteen direct and indirect identifiers,
such that removal is considered best practice: names, geographic subdivisions, dates, telephone
numbers, fax numbers, email addresses, social security numbers, medical record numbers, health
plan beneficiary numbers, account numbers, certificate/license numbers, vehicle identifiers, device
identifiers, web URLs, IP addresses, biometric identifiers, full-face photographs and comparable
images, and any other unique identifiers [9]. Principally, it should be noted that removal of these
identifiers assumes sufficient de-identification.
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3. Reconstruction from a Trained Model

This section discusses the theoretical background and common methods for reconstructing training
data from a deep learning model. Note that reconstruction is often referred to as ‘inversion’ or an
‘inversion attack’ in the literature. This report uses ‘reconstruction’ moving forward, for clarity.

3.1. Theory: Memorization

Deep neural networks may memorize specific features from the training data instead of learning
general patterns to perform tasks [42]. Regarding image models, a notion of approximate
memorization has been defined as a sufficient level of image similarity between an image and its
reconstruction [43], and has often been linked to privacy leakage. Overfitting is considered to be one
indicator of a model’s memorization and a sufficient condition for privacy leakage, although
memorization has been found to exist without overfitting [44].

A relationship between training data reconstruction and the presence of memorization in a model
exists, such that memorized training examples may be more distinctly encoded within the trained
model’s parameters [17, 18]. This relationship is founded upon the idea that a trained model’s
parameters are generally determined by its training data [45]. Training data has been reconstructed
within various bounds, including access to some held-out set of training data [17], federated learning
environments with access to training data gradients [46, 47], and access to only model parameters in
pixel-space [20]. Reconstruction methods are discussed below, in brief.

3.2. Gradient-based reconstruction

Direct gradient-based attacks aim to approximate training data by leveraging a shared gradient [48,
49], which can lead to pixel-wise accurate recovery of images [19, 50]. Attacks typically optimize over
the input space to search for training examples whose gradient matches that of the observed gradient
[19, 51]. Reconstruction from a single gradient query at a randomly chosen parameter value was
demonstrated by [47], and batches of training data were able to be reconstructed without prior
knowledge as shown by [52].

Undoubtedly, the usage of gradients to reconstruct training data requires access to gradients; these
attacks are often studied in federated learning environments or specific settings where gradients are
appropriately available.

3.3. Pixel-space and latent-space reconstruction

Without access to gradients, reconstruction attacks have been performed in pixel-space and
latent-space, where reconstruction is treated as an optimization problem.

Requiring primarily a trained classification model and its parameters, the batch normalization
(BatchNorm) layers of CNN architectures have been utilized to reconstruct images in pixel-space,
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termed DeepInversion [20]. Given that BatchNorm layers store the running means and variances of the
original training data activations, these values are presumed to store the model’s ‘history’ or ‘memory’
of previously seen data at multiple levels of representation through multiple BatchNorm layers. The
method of DeepInversion then assumes that these intermediate activations follow a Gaussian
distribution with mean and variance equal to the running statistics. As opposed to training a new
attacker model, [20] directly optimizes random noise in pixel-space using the BatchNorm statistics to
guide generation of the original training images, and aims to maximize the trained model’s confidence.
Specifically, the trained model’s confidence is maximized for a given target class using labels from the
original training set. This is considered ‘class-conditional’ in the literature, where the random noise
input is optimized per-class, and has been found to improve the efficiency of optimization [20, 53].

Approaching reconstruction in latent-space requires a generator, e.g. GAN, to access the latent
representations of images. [54] used a GAN to learn a distributional prior from a disjoint public dataset
of the same scope (e.g. if the target model is trained on a private dataset of faces, the GAN is trained
on a separate publicly available dataset of faces). The prior then guides the optimization process in
latent space where the aim is to find latent vector z that generates an image of maximal likelihood
under the trained target model while maintaining realism with class-conditional information and
additional regularizers. Similarly, [55] trained a separate decoder to minimize the distance between an
original training image and its reconstruction through their latent space representations. However, this
assumes access to latent space representations of the original training set, either from a held-out
subset or the entire training set itself.

3.4. Architectural differences

Within the domain of radiology imaging, deep learning models are generally task-specific across
modalities, with common non-generative tasks including detection, classification, and segmentation
[16, 56, 57]. Detection and classification tasks often use some variation of a CNN architecture
(DenseNet, ResNet, etc), with ViT architectures becoming increasingly common. Segmentation tasks
tend to similarly use variations of CNNs, particularly encoder-decoder architectures such as the U-Net
[58], and to a greater extent ViTs and hybrid ViTs such as the Swin-UNETR [59].

Regarding privacy, ViTs have been shown to memorize more, comparative to CNNs, where the
attention mechanism particularly exacerbates vulnerability to attacks [60]. In conducting an ablation
study, [60] also demonstrated that the fewer activation layers of a ViT are another contributing factor to
privacy vulnerability.
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4. Re-identification from Model
Parameters

4.1. Methods

Given the stated assumption that we only have access to a trained model’s parameters, e.g. an
exported checkpoint, it is clear that the methods discussed above are not within this constraint. The
most closely aligned method is the DeepInversion approach by [20], which mainly uses a trained
model and its parameters, although also considers original training set labels for class-conditional
reconstruction in pixel-space. However, early experiments proved the difficulty of this approach with
complex medical images (Figure 2).

Initialization - Step 0 Optimized - Step 2000

Figure 2: DeepInversion [20] on 2D chest x-rays.

As such, we reconstruct images by approximating the trained target model’s data manifold with a
progressive growing GAN (PGGAN), maximizing the likelihood a generated sample was part of the
original training set, and identifying patient information by predicting demographics from the
reconstructions deemed likely (Figure 3).

While these methods, i.e. an attack, employed by some unknown adversary may not appear to have a
significant probability in practice, privacy is considered here in a worst-case scenario rather than an
average-case one given the high-risk nature of deep learning models trained on sensitive medical
data. We thus assume the probability of an attack attempting reconstruction and patient
re-identification is non-zero. Realistically, medical data have been a target in past data breaches and
attacks [61–63], and re-identifying patient information has been considered a lucrative target for health
insurance companies [64] and data mining companies [65].

4.2. Materials

With our interest in understanding the effect of different model architectures and memorization, we
consider 4 classification models: a CNN (ResNet18 from torchvision), the CNN trained to overfit, a
ViT (vit_b_16 from torchvision), and the ViT trained to overfit. Each of these models were trained to
predict cardiomegaly vs. no finding from 2D chest x-rays as a binary classification task for simplicity.
For the overfit models, overfitting is confirmed with a training accuracy of 1.0 and a validation accuracy
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Fine-tune PGGAN

Generate samples

Maximize sample likelihood

Predict demographics

Patient information

Classifier models
Data: CheXpert sample

CNN loss

1. Internal activations & 

statistics

Data: NIH ChestX-ray14

Predict age (continuous) & 

biological sex (binary)

2. Mahalanobis distance

BatchNorm statistics

Feature activations

Logit confidence

Total variation regularizer

LayerNorm statistics

CLS token activations

Attention signals

Logit confidence

Total variation regularizer

ViT loss

Figure 3: Overview of methods for re-identification from model parameters.

persisting at 0.75 (CNN) and 0.85 (ViT). Moving forward, we term each model a ‘target model’, i.e. the
model from which we attempt to reconstruct training images and identify patient information.

The models were trained on 2D JPG chest x-rays from the CheXpert dataset [66]. The CheXpert
dataset is publicly available and has been de-identified, which simulates the defined requirement of
models trained on de-identified radiology images. Chest x-rays, specifically, are used given that
structural images may allow for sufficiently clear per-patient textural differences or shape differences in
comparison to functional images such as a cranial fMRI, as previously stated to be found in the
literature [5, 31].

Additionally, we use the generator from a pre-trained PGGAN [67] that was trained on 2D PNG chest
x-rays from the publicly available, de-identified NIH ChestX-ray14 dataset [68], instead of training a
generator from scratch, due to compute limitations. The PGGAN was found to substantially improve
reconstruction clarity compared to other generative models such as a variational autoencoder, likely
due to its less restrictive latent space.

4.3. Stage 1: Approximate target model data manifold

If we assume that a target model’s parameters are compressed representations of its training data,
similar to [20], we can then fine-tune a pre-trained generator G to match those parameters, thus
approximating the target model’s training data manifold. Rather than optimizing on images or random
Gaussian noise directly, as in previous methods, we optimize the generator to produce images that are
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more closely aligned to the target model’s data manifold, according to its stored parameters. The
pre-trained generator serves as an inductive prior, as it has already been trained on a different set of
chest x-rays, which allows for a constrained search space to images considered realistic during
optimization. By fine-tuning the generator such that its outputs induce similar internal activations in the
target model as its original training data, we implicitly reconstruct the target model’s data manifold,
thereby compelling the generator to produce images that lie on or closer to the target model’s true
manifold. As opposed to learning the full probability density of the target model’s training data, i.e. its
‘distribution’, fine-tuning the generator guides it towards regions of image space that look like the target
model’s training data, i.e. its ’manifold’.

This process varies between the CNN models and the ViT models, given differences in architecture.
We leverage these architectural differences to sufficiently compare reconstruction performance
per-architecture, which are discussed below. The fine-tuning process for each target model was
completed on Google Colab with a T4 GPU.

For all target models, random noise latent vectors z are first sampled according to the generator’s
latent dimensionality (dim=512) and a batch size defined within compute limits (batch_size=16).
Images are then produced from the latent vectors using the generator and passed through the target
model to collect activations.

CNN models. Fine-tuning the generator towards the CNN models consists of 4 main components
which are treated as loss terms:

1. BatchNorm statistics: Since BatchNorm layers learn population-level statistics (running mean
and variance) during training, we use these statistics as proxies for the target model’s data
manifold.

2. Feature activations: A forward hook is first registered to retrieve activation maps from a desired
feature layer, e.g. layer4.1.conv2, during forward passes. Matching feature activations
between the generated image and the target model’s frozen parameters encourages deep
features to have certain statistics such as unit variance and non-zero mean, which aims to
encourage reconstruction diversity that is semantically meaningful.

3. Logits: While we assume we do not have access to the real target model labels (e.g.
cardiomegaly vs. no finding), the final Linear layer of the ResNet18 model’s state_dict
checkpoint contains the number of classes used to train the model through parameter
out_features, where binary classification is designated by Linear(in_features=512,
out_features=1, bias=True). We can then use this information for class-conditional
generation to encourage reconstruction of the representative data manifold per-class with logits.

4. Total variation: Total variation is a regularization term to support the plausibility of generated
images by smoothing noise and artifacts common when generating images.

Each loss component measures the proximity between the generated images’ activations in the target
model to the target model’s original frozen parameters. Total loss is computed as a weighted sum of
the components, after which gradients are backpropagated through the frozen target model to the
generator, updating its weights.

ViT models. Fine-tuning the generator towards the ViT models consists of 5 main components which
we treat as loss terms:
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1. LayerNorm statistics: In comparison to the global BatchNorm statistics of a CNN, the layer
normalization (LayerNorm) layers of a ViT reflect local structure per-token, with no running mean
or variance. However, we can aggregate across tokens and use the pre-normalized mean and
variance to obtain more information about the true manifold.

2. CLS token activations: As the CLS token reflects the ViT’s high-level representations of its
training data, we extract its embedding from the final transformer encoder and regularize its
magnitude to prevent random noise from being considered class-representative. While its
’counterpart’ in this fine-tuning is the feature activations in a CNN, the CLS token embeddings
afford global representations.

3. Attention signals: With the ViT, we take advantage of the attention mechanism to guide
generated images towards the target model’s internal processes. By measuring the entropy of
attention distributions, we can minimize it to increase the confidence of attention maps, where
each token attends strongly to only a few other tokens in the input sequence, i.e. ensuring that
attention is focused, which encourages the generator to produce semantically structured images.
Pairwise cosine similarity is also computed between attention heads (where ViT target models
use multi-head attention) to encourage diverse and non-overlapping attention patterns.

4. Logits: The final Linear layer of the vit_b_16 similarly contains the number of classes used to
train the model, which we use in the same way as the CNN for class-conditional generation.

5. Total variation: The total variation regularizer is also used in the same way as the CNN.

Total loss is likewise computed as a weighted sum of the components, with gradients backpropagated
to update the generator’s weights.

Once the generator is fine-tuned towards each target model, a sufficiently large number of samples
(e.g. ≥ 1000) is then generated to obtain an adequate distribution.

4.3.1. Stage 1 results

To validate this fine-tuning method, we measure distributional differences between the original
generator and the fine-tuned generator, as well as between the fine-tuned generator and the target
model, to examine if fine-tuning is shifting the overall distribution of the generator and if so, shifting
towards the target model.

Per-image entropy is calculated in pixel-space with Shannon entropy, which measures the distribution
of pixel intensities for an image. Higher entropy indicates greater variability, where lower entropy
indicates a more uniform image, e.g. all grayscale noise. The average entropy is then taken across all
generated images. Embedding-space is accessed with Principal Component Analysis, from which
average kurtosis is calculated across principal components. Fréchet Inception Distance (FID) is
generally used to evaluate the quality of images generated by a GAN and is used here to measure the
distance between 2 distributions in feature space, where feature representations are extracted with a
pre-trained InceptionV3 network from torchvision.

It is clear that fine-tuning the generator does, in fact, shift its distribution, which is seen in both
pixel-space and embedding-space, as metrics for the fine-tuned generator are distinct from the original
generator (Figure 4).
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Original → Fine-tuned

Pixel entropy 7.402 → 6.486 

159.9088 178.9562 95.5836 74.7530

7.963

4.299

104.9406 90.0923

7.963

4.3061.065 → 0.436PCA kurtosis

FID score

Target CNN Original → Fine-tuned Target Overfit CNN Original → Fine-tuned Original → Fine-tuned Target Overfit ViTTarget ViT

1.065 → 0.566 1.065 → 1.001 1.065 → 0.58

7.402 → 6.176 7.965

0.532

198.1082

7.402 → 6.176 7.402 → 6.125 7.962

0.396

171.7221

CNN Overfit CNN ViT Overfit ViT

Figure 4: Distribution-level metrics in pixel-space and embedding-space from Stage 1 fine-tuning.

In embedding-space, fine-tuning leads the generator closer to the kurtosis distribution of the overfit
CNN and overfit ViT, in comparison to the CNN and ViT that are not overfitting (Figure 5).

CNN

ViT

Overfit CNN

Overfit VIT

Figure 5: Smoothed kurtosis curves across principal components for the original generator, each fine-
tuned generator, and each target model. Shading represents the bootstrapped standard error.

Regarding FID scores, the distributions of the fine-tuned generator on both the ViT and the overfit ViT
are closer in distance to the original generator, but are also closer in distance to each target model, in
comparison to the CNN and overfit CNN.

4.4. Stage 2: Maximize sample likelihood

With the sufficiently large number of samples generated for each model, it is unlikely that every sample
generated is part of the target model’s original training set, given that fine-tuning the generator had the
goal of approximating the target model’s global training data manifold and not individual samples. In
other words, each sample may lie along the target model’s data manifold, depending on the
performance of fine-tuning, but may not all be an individual sample from the target model’s training set.

As our aim is to reconstruct images from the target model’s original training set with its parameters
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alone, we aim to identify images that most likely to be part of the original training set. From all samples
generated, the following are determined:

1. Images that closely match the target model’s parameters, using the same components as stage
1 for each architecture, with the exception of the total variation regularizer.

2. Images that are close in Mahalanobis distance to the target model in feature-space, where
low-distance is considered likely for a sample to be in-distribution. We assume that the
distribution of the original training images are approximately multivariate Gaussian based on the
model’s BatchNorm (CNN) or aggregated LayerNorm (ViT) statistics. Under this assumption,
Mahalanobis distance is considered appropriate, as it assumes the feature-space is
approximately multivariate Gaussian.

Specifically, we determine the samples that both closely match the target model’s parameters and are
close in distance to the target model in feature space. Such overlap may indicate that those samples
are strong candidates for being in-distribution, relative to the target model. These ‘likely’ samples, then
resemble the target model’s data manifold from both a functional and distributional standpoint. Where
stage 1 intends to learn the target model’s overall data manifold, stage 2 attempts to recover the
individual samples that best explain the target model’s parameters.

4.4.1. Stage 2 results

The number of samples considered likely varied per model: the CNN had 2 samples, ViT had 1
sample, overfit ViT had 2 samples, and the overfit CNN had the highest number with 23 samples.

To evaluate the efficacy of these methods, we conduct a nearest neighbor search in feature space
between the likely samples and the real target model training images to examine if the likely generated
samples are indeed close to images from the target model’s training data. The Structural Similarity
Index Measure (SSIM) is also computed between the sample and its nearest neighbor.

In practice, we assume we do not have access to the target model’s training data, however, we do so
here for validation purposes only. Figure 6 displays the likely samples and their nearest target
neighbors for the overfit CNN, and Figure 7 displays the same for the CNN, ViT, and overfit ViT.

It should be noted that SSIM scores are relatively poor across all models. This may be in part due to
stylistic differences between reconstructed samples and the target model’s real training images, or
perhaps because while reconstructed samples and their nearest neighbors are relatively close in
shape, generally, they are not exact matches.

Particularly for the CNN, reconstructed samples are significantly worse in comparison to samples from
the other models. Fine-tuning the generator towards the CNN may evidently shift its distribution
substantially, yet do so at the expense of realistic chest x-rays. Whereas, the other models maintain
greater realism in generated samples, which may affect image interpretability when aiming to extract
identifiable information from them.
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Overfit CNN (n=23)

Figure 6: Reconstructed samples for theOverfit CNNwith their nearest target neighbor in feature-space,
and the SSIM score between them.

CNN (n=2) Overfit ViT (n=2)ViT (n=1)

Figure 7: Reconstructed samples for the CNN, ViT, and overfit ViT with their nearest target neighbor in
feature-space, and the SSIM score between them.

4.5. Demographic prediction

A multi-task DenseNet121 from torchvision was trained to predict patient age as a continuous value
(regression task) and biological gender as male vs. female (binary classification task). Such
demographic information has previously been predicted from chest x-rays in the context of bias and
fairness [69].

The demographic model was trained on the full NIH ChestX-ray14 dataset, similar to the original
PGGAN. Rare age bins were oversampled in the training set, given significant imbalance, using
WeightedRandomSampler from PyTorch.

For age, the regression task achieved a validation MAE of 5.12, a validation RMSE of 6.63, and a
validation R2 of 0.845. For biological gender, the classification task achieved a validation accuracy of
0.95 and a validation AUC of 0.991. Clearly, the model does not achieve perfect predictions of age or
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gender, but is able to predict rough estimates of each. See Figure 8 for the distribution of age
predictions and ground truth and Figure 9 for the distribution and confusion matrix of gender, where
both figures refer to predictions from the model’s validation set.

Figure 8: Distribution of predictions and ground truth from the validation set for age, binned only for
visualization.

Figure 9: Distribution of predictions and ground truth, as well as the confusion matrix, from the validation
set for biological gender.

From the likely reconstructed samples, demographic information is then predicted. Figures 10 and 11
display the predictions of the reconstructed samples, the predictions of their nearest neighbors, and
the ground truth of the nearest neighbors which was indicated in the original CheXpert dataset. The
absolute error for age in years and a flag for correct gender prediction in comparison to the ground
truth is also shown.

The overfit ViT appears to perform better than the other models, in terms of both error for age and
accuracy for gender; it has the lowest absolute error for age and both reconstructed samples had
accurate predictions for gender. However, it is important to note that the sample size is small (n=2
likely samples). While the overfit CNN has the greatest number of likely samples (n=23), predictions
for both age and gender on these samples are comparatively deficient, with approximately 65% of
samples accurately predicting gender and highest absolute error for age being around 30 years.
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Figure 10: Table of predicted demographics (age and gender) for reconstructions and their nearest
neighbors, alongside the ground truth, for the overfit CNN.
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5. Patient Privacy Implications

5.1. Re-identification cases

With reconstructed samples and their predicted demographics, it is suitable to observe that there
exists some potential to re-identify a patient, although heavily dependent on the circumstances.

If, for example, a health insurance company aims to reduce their financial risk or build better risk
models, the reconstructions and their demographics may significantly aid in re-identifying a patient,
particularly for the overfit ViT where demographics tend to be more accurate. Since a health insurance
company is more likely to have access to additional information such as medical records, it is also
more likely that with a reconstructed chest x-ray, patient gender, and approximate age, the company
would be able to re-identify a patient or at least reduce the population of potential patients down to
small numbers. Reconstructed images may also contain visible hardware such as pacemakers, which
would aid in re-identification.

However, without access to medical records, radiology reports, or other additional information, it
appears infeasible, or at least very difficult, for some attacker to re-identify a patient from the
reconstructed chest x-ray and approximate demographics alone. Even if, for the sake of argument, the
attacker had prior knowledge of the institution site where the x-ray was acquired, the number of
patients that fit this cohort could still be a population of thousands.

Thus, while reconstructed images and their approximate demographics alone are unlikely to be
sufficient to re-identify a patient, there still exists some level of risk to patient privacy depending on
additional information some attacker may have.

5.2. Effect of architecture and memorization

When comparing the 4 target models to examine if architecture and presence of memorization affect
reconstructions, it is apparent that there are considerable differences at both the distribution level
(stage 1) and the sample level (stage 2).

Distributionally, with the CNN models (overfit and non-overfit) as the target, there was generally greater
distance between the original generator and the fine-tuned generator. It then seems likely that the CNN
models enable the generator to leave its original manifold more aggressively during fine-tuning, but in
doing so may sacrifice semantically meaningful and plausible images, particularly for the non-overfit
CNN. In comparison, with the ViT models as the target, greater distance between the original generator
and the fine-tuned generator, as well as between the fine-tuned generator and the target model, was
observed. This could mean that while the ViT models do not enable the generator to leave its original
manifold as aggressively as the CNN, the outputs produce more semantically valid chest x-rays.

One interpretation may be that although memorization does have an effect, how a model’s memory is
encoded in its parameters and architectures is also significant. In brief, a CNN’s convolutional layers
encode local features hierarchically, whereas a vision transformer captures global relationships
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encoded as distributed patterns and activations spread across multiple dimensions. Since fine-tuning
is based on the intermediate activation layers of the target model, it may be more difficult for the
generator to shift towards activations that are dispersed in the ViT and not in a designated feature map
like the CNN.

This relationship is similarly reflected at the sample level, where the CNN models had more likely
samples in comparison to their ViT counterparts, i.e. the CNN had more likely samples than the ViT
(albeit only 1) and the overfit CNN had more likely samples than the overfit ViT. Yet, the ViT models,
and specifically the overfit ViT, had samples that allowed for more accurate demographic predictions
than the CNN models.

It is then apt to posit that with a model’s parameters from a frozen checkpoint alone, the overfit ViT
poses the greatest risk to patient re-identification. Although the generator fine-tuned towards the
overfit ViT does not produce images that are as closely aligned to the target model’s internal statistics
and parameters, the outputs are more semantically meaningful and stylistically similar to the target,
upon which demographics can be more accurately predicted. Whereas, the generator fine-tuned
towards the CNN models leads to images that are more closely aligned with the target model’s
parameters yet produces less semantically and stylistically similar images. In other words, while the
CNN (specifically the overfit CNN) leads to more faithful reconstructions to the target model in shape,
the overfit ViT allows for more accurate demographic predictions, i.e. identifiable information, and is
thus a greater risk to patient re-identification.

5.3. Potential mitigations

Differential privacy (DP) is the canonical approach to mitigating reconstruction attacks and is common
in privacy-preserving machine learning more generally [22, 70]. Within the image domain, DP typically
adds calibrated noise, non-trivially tuned by hyperparameter ϵ, into model parameters during training
which, in principle, should limit the possibility of reconstructing data by concealing or minimizing the
relationship between training data and the model’s response [71–73]. In practice, however, a tradeoff
between total privacy and model utility exists similar to de-identification; too much noise added by DP
leads to less accurate and generalizable models [22, 73].

It should also be noted that for some model reconstruction attacks, DP is an insufficient defense even
with strong privacy budgets, e.g. ϵ = 0.1 [54, 73]. This is due to the aim of DP not being to protect the
entire data distribution, but rather hide the presence of a single sample in the training set [54, 72].

Based on the results of this research, a more practical and straightforward mitigation is to ensure that
models are not overfitting, i.e. memorizing. Since the overfit ViT, specifically, led to the most accurate
identifiable information (demographics) extracted from reconstructed images compared to the other
models, it is not insignificant to use methods to prevent overfitting during training. Such methods are
already commonly used in deep learning models for medical imaging, and include the use of
regularization such as dropout [74] and various image augmentation techniques [75] which are
particularly beneficial when the training dataset cannot itself be increased or diversified.
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5.4. Considerations and limitations

This research has the following limitations that should be considered:

1. Only 2D images in PNG/JPG format were studied. Since medical images are primarily acquired
and used in 3-dimensions, it would be valuable to examine if the results still hold with 3D images.

2. Chest x-rays were the only modality and anatomical region considered. While chest x-rays may
be inherently better suited to patient re-identification, given that structural imaging allows for
visibly unique per-patient differences, it would also be important to see if the methods used are
feasible on other modalities and regions.

3. Classification was the only task used for the target models. Although class-conditional
reconstruction has been previously established as beneficial, the prevalence of other tasks such
as segmentation in medical imaging, renders those tasks similarly beneficial to understand their
behavior with the methods used.

4. Mitigations such as DP were unable to be undertaken against the methods used in this research,
due to time constraints, and should also be carried out to examine its validity as a robust defense.

5. This research does not attempt to link reconstructions and their demographics to real patient
identities, in part due to data usage agreements from the publicly available datasets used. The
re-identification scenarios in section 5.1. were given to demonstrate that re-identification is
feasible under certain circumstances, in principle.

5.5. Future research

In addition to the limitations above that posed potential areas of future study, further research should
also examine the results of adversarial training with a full GAN (both generator and discriminator)
instead of only using a pre-trained generator, which could aid in regularization and improve both the
semanticity and visual style (e.g. contrast) of the reconstructed images.

Another area of future research could be using the demographic model’s feedback as part of the loss
during fine-tuning to encourage generation of images that can be more accurately predicted upon. The
demographic model could also be trained on diverse datasets to increase its exposure to visual
differences of e.g. chest x-rays and thus be more robust to stylistic variations of reconstructed images.
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6. Conclusion

This report presents the use of reconstruction as a mechanism for patient re-identification, from a
trained model’s parameters alone. A two-stage reconstruction approach first approximates the trained
target model’s data manifold by fine-tuning a PGGAN generator pre-trained on images of the same
modality and region (2D chest x-rays), and then identifies which of the reconstructed samples are most
likely to fall under the target model’s true training set. Age and biological gender are then predicted for
the likely reconstructed samples.

Results show that an overfit ViT is the model most vulnerable to patient re-identification, in comparison
to a CNN, overfit CNN, and ViT, indicating that architecture and memorization are contributing factors
to re-identification. We also outline cases in which re-identification would be possible from the
reconstructed images and their predicted demographics, and discuss relevant mitigation strategies.

Given the constraint that we only have access to a trained model’s parameters, e.g. through a frozen
checkpoint, this research determines a realistic estimation of risk to patient re-identification for models
trained on de-identified medical images.
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Appendix

Code is available here: https://github.com/leesadie/Re-id_Risk_Imaging
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